安光勇,安光勇讲师,安光勇联系方式,安光勇培训师-【讲师网】
大数据、互联网金融、互联网+、征信行业专家
41
鲜花排名
0
鲜花数量
扫一扫加我微信
安光勇:金融科技、大数据生态与数字化转型
2019-11-18 3437
对象
1) 政府机构的各条岗位,想知道目前金融领域都有哪些创新模式,未来的方向,以及如何制定和监管这些新生事物的相关制度,需要坚守什么样原则等 2) 金融机构(银行、证券、保险、消费金融、理财、信托、基金等)的决策层(战略、企划等部门),以及各业务条线岗位,想知道目前金融科技有哪些创新商业模式、自身如何转型、如何做产品规划、设计、运营等 3) 传统产业(制造业、零售业、物流行业等)各业务条线岗位,想知道如何实现数字化转型、如何通过数据和金融变现、如何规划和运作金融科技平台,及产品规划、设计、运营等 4) 本科和商学院(MBA)以及法学院学生,系统理解和掌握金融科技,人工智能、大数据等前沿科技在金融场
目的
1) 了解国内金融科技、大数据相关的法律体系、监管原则以及可容忍的底线等,帮助企业制定创新的产品、服务和解决方案相关的战略(如:如何判断相关产品是否为过渡性产品,如何制定相关资源的投入,是否要实施收割战略等);帮助企业一线人员,能够在不确定的环境下学会如何解读企业和政府的监管政策,避免《精准踩雷》的误区 2) 了解金融科技动向,能预测未来的发展方向,掌握金融科技在所属行业的应用 3) 了解全球范围内的金融板块生态布局和其原理,帮企业寻找出适合国内环境和自身环境的金融板块战略, 4) 帮助客户了解数字化转型及通过金融科技变现的战略分析和思维 5) 通过案例分析: a) 掌握国内各种形态的机构的创新商业模式、金融产品动向及运作方式 b) 学会预测未来的发展方向,创新产品的壁垒等 c) 理解金融产品的基本原理,政府监管机构的监管方式、思维逻辑,以及法律、制度的底线
内容

金融科技、大数据生态与数字化转型

(4天版,根据需要可调成半天、1天、2天或5天等版)


一、导师介绍

安光勇

-      韩国首尔国立大学MBA(全球排名37);高丽大学博士课程;

-      发改委培训中心特聘讲师;国内首家信用管理法学院外聘教授;安快科创谷导师团导师;

-      曾就职于BCG,BAH,LG,NICE, 阳光保险, 历任海外业务总监,数据开发部总经理等职;2次创业经验(其中一次为创立国内最大、最活跃大数据协会——首席数据官联盟),所开发的客户包括:

o    政府客户:人行、发改委、商务部,以及越南、蒙古、塔吉克斯坦等国央行

o    金融客户:花旗、微软、LG、以及工、农、中、建,平安等

o    电商客户:百度、滴滴出行、美团点评、阳光集团等

-      16年的金融科技、互金、征信、大数据领域的经验

-      中国大数据产业生态联盟专家委员会专家委员,《影响中国大数据产业进程100人》,

-      与20多位专家共著《赋能数字经济:大数据创新创业启示录》,以及《大数据在金融行业实用案例剖析》系列,作者包括:中国科学院大学院长、央行金融博士后、北京大学博士后、工行IT部副总经理、复星金服集团CEO等专家,以及贵阳大数据交易所、九次方、天眼查、百分点、法海风控等企业的创始人等

-      参与制定国内第一个信用行业标准体系——《征信业管理条例》(2012)


二、差别化优势

-      学员覆盖监管机构和企业高管,对监管方(政策等)和企业端,以及需求方(C端客户)的最新动态和需求非常了解

-      通过10多年的海外经验,对如何引进国外领先的新技术、商业模式和法律制度,以及如何成功落地等方面有丰富经验,并有自己独到的见解,能从文化层面进行把控

-      除了培训,通过后续的咨询(包括监管机构)和项目落地,能够影响政府的政策方向和企业的落地实施项目


三、部分培训成果

-      国内最先引入、普及个人破产制度,并第一次引用“信盲”概念(国内首家信用管理法学院)

-      通过给高层提供战略咨询,以及对各业务条线风控领域的培训(把控催收时的法律底线),成功帮某一P2P起家的公司实现战略转型,避开政府的强监管,完成了多元化布局

-      通过培训+咨询的方式,成功帮助国内最大汽车主机厂实现数字化转型。并设计了汽车新零售领域的商业模式,成功地把目标客户群扩展到原先的2~3倍,并成功引入汽车征信以及家庭征信的概念

-      通过一年的培训+咨询的方式,成功帮助某金融科技公司进行金融板块的战略性布局,借助互联网金融风口,使其股票价格翻20多倍,曾一度达到全国最高;并帮其成功申请到金融牌照(企业征信牌照)

-      通过实际运营+培训的方式,帮助国内某一综合保险集团,成功布局金融板块,并拿到相关牌照(国内第一个信用保证保险牌照,以及企业征信牌照)

-      通过公益性沙龙、公开培训、讲座等方式,帮其提高内容水平,确立了大数据相关行业协会的龙头地位,成为最大、最活跃的大数据协会(CDO联盟)


四、课程概要

1、课程模式:

1)     大课模式:人数70人~300人(适合普及知识)

2)     线下集中面授模式:建议参与人数20~70人(适合针对性的培训,主要面向政府和企业高管)


2、 课程目标:

1)     了解国内金融科技、大数据相关的法律体系、监管原则以及可容忍的底线等,帮助企业制定创新的产品、服务和解决方案相关的战略(如:如何判断相关产品是否为过渡性产品,如何制定相关资源的投入,是否要实施收割战略等);帮助企业一线人员,能够在不确定的环境下学会如何解读企业和政府的监管政策,避免《精准踩雷》的误区

2)     了解金融科技动向,能预测未来的发展方向,掌握金融科技在所属行业的应用

3)     了解全球范围内的金融板块生态布局和其原理,帮企业寻找出适合国内环境和自身环境的金融板块战略,

4)     帮助客户了解数字化转型及通过金融科技变现的战略分析和思维

5)     通过案例分析:

a)      掌握国内各种形态的机构的创新商业模式、金融产品动向及运作方式

b)     学会预测未来的发展方向,创新产品的壁垒等

c)      理解金融产品的基本原理,政府监管机构的监管方式、思维逻辑,以及法律、制度的底线


3、适合人群(根据不同人群,课程结构和内容会相应调整)

1)     政府机构的各条岗位,想知道目前金融领域都有哪些创新模式,未来的方向,以及如何制定和监管这些新生事物的相关制度,需要坚守什么样原则等

2)     金融机构(银行、证券、保险、消费金融、理财、信托、基金等)的决策层(战略、企划等部门),以及各业务条线岗位,想知道目前金融科技有哪些创新商业模式、自身如何转型、如何做产品规划、设计、运营等

3)     传统产业(制造业、零售业、物流行业等)各业务条线岗位,想知道如何实现数字化转型、如何通过数据和金融变现、如何规划和运作金融科技平台,及产品规划、设计、运营等

4)     本科和商学院(MBA)以及法学院学生,系统理解和掌握金融科技,人工智能、大数据等前沿科技在金融场景中的创新应用,商业模式等知识。


五、课程大纲:

1、课程目录

1)     大数据生态圈的搭建

2)     金融科技助力数字化转型

3)     金融板块的布局

4)     数字化转型1:工业&智能制造领域为例

5)     数字化转型2:新零售(汽车)为例

6)     演练:数据分析


2、具体时间表

1)大数据生态圈的搭建


 DAY1 上午

 大数据生态圈的搭建

 09:00-11:30


 互动环节:个人介绍、课程介绍、学员破冰


  大数据发展历史

  传统大数据机构

  国内大数据行业


 o   中国大数据企业排行榜

 o   大数据产业地图(大数据生态、关系图谱)

 o   大数据企业评价指标


  大数据相关法律(合法性)


   数据安全

   大数据时代的隐私

   国内外法律环境的比较


  大数据的未来展望 (机遇和挑战)

  大数据引出的新理论


 o    大数据时代:因果关系变得次要

 o    没必要知道为什么,只需要知道是什么

 o    能够直接给出答案,但不知道为什么?


  大数据架构


 o    计算能力( Spark )

 o    存储能力( HBase )

 o    实时能力( Hbase )

 o  

 数据调度( ETL )




 DAY1 下午

 大数据生态圈的搭建

 13:30-17:30


 互动环节:白名单、灰名单、黑名单中,那个名单价值最高?


  传统行业案例

 o    大数据案例:侦探破案

 §  案例:胡安·普约尔·加西亚

 §  破案模式的变化

 §  网上的福尔摩斯

 §  案例:《杀人回忆》

 §  案例:“开膛手杰克”

 §  国家公敌


  高端技术领域的应用


 o    案例:心理学应用——Lie to me

 o    案例:医学应用——Bones


  普通领域中的应用

  数据源


   如果公司没有任何数据,该怎么办?

   收集什么数据

   怎么收集数据?

   怎么把这些内容反映到产品中?

   数据来源


    内部:公司内部都有什么数据?

    外部:第三方数据,如:征信报告;行业报告——公司战略



  企业大数据平台的建设


   大数据平台开发的阶段


    专家模型

    一般模型

    客户化模型

    综合模型



2)金融科技助力数字化转型


 DAY2 上午

 金融科技助力数字化转型

 09:00-11:30



 互动环节:创新最活跃的行业、领域是什么?

 ·         金融科技涵义

 o    金融科技的定义、主要特征

 o    全球金融科技发展现状

 o    金融科技产业主体类型划分


  人工智能


 o    人工智能技术特点及行业特征

 o    人工智能五大关键技术(机器学习、生物识别、自然语言处理、语言识别、知识图谱)

 o    人工智能在金融行业的应用(智能风控、智能投顾、智能客服、智能支付、智能理赔、智能营销、智能投研)


  云计算


 o    云计算概念界定

 o    云计算主要玩家


  区块链


 o    区块链诞生背景、内涵与特点、分类

 o    区块链在金融领域的应用(数字货币、支付清算、供应链金融、证券交易、保险、征信等)


  传统产业遇到的主要挑战


 o    科技对传统产业的影响

 o    互联网金融对银行传统核心业务冲击的剖析

 o    互动环节:提问学员传统银行面临有哪些挑战?互联网金融又是如何冲击银行主营业务的?


 o    传统产业的主要挑战:效率和成本

 o    新兴产业的主要挑战:市场

 o    通过产业互联网+金融科技实现跨产业协同


  对于企业文化的要求


   大数据思维——不仅限于数据部门

   数据驱动思维


  如何搭建数据团队?——人才战略/人才储备


   综合性人才的需求:分析专家+业务专家

   人才背景要求:学历、专业、经验…

   外部引进

   内部培养


3)金融板块的布局



 DAY2 下午

 金融板块的布局

 13:30-17:30



 互动环节:金融危机时,哪些行业会有爆发式增长?


  金融危机与金融生态


 o    金融危机:《危险》和《机会》并存

 o    金融危机和国家风控能力

 o    不同背景的金融科技公司的发展机会预测


  跨国集团金融板块的布局


 o    NICE:全球唯一一家形成信用产业链闭环的综合集团

 o    整体生态体系

 o    历年财务表现(销售额增长)

 o    集团历史

 o    产品生态&产品组合(portfolio)

 o    数据源生态

 o    客户群生态

 o    风控产品生态圈

 o    差别化优势:律师团队

 o    各大业务板块介绍

 §  信用评级板块

 §  个人征信板块

 §  企业征信板块

 §  催收板块

 §  支付板块

 §  信用卡板块

 §  市场调研板块

 §  对公&零售领域的风控咨询板块

 o    创新产品——整容贷


  国内大型集团金融板块的布局


 o    阿里巴巴

 o    蚂蚁金服

 o    腾讯

 o    百度

 o    京东

 o    平安

 o    小米

 o    360

 o    复星

 o    泛海

 o    失败案例

 §  乐视

 §  万达


  金融生态中的信用体系


 o    信用相关法律

 o    信用体系相关的政府机构

 o    金融客户(银行)的数据需求趋势

 o    国内外信用行业的比较

 o    全球信用体系发展程度

 o    国内信用市场规模

 o    信用行业的杠杆效应

 o    信用行业的意义


  大数据领域的投入产出比分析

  国内金融行业的竞争

  金融科技公司的财务表现

  金融科技公司的利润、股票以及综合曲线的预测

  大数据公司的差别化策略(跳跃式增长曲线)



4)数字化转型1:工业&智能制造领域为例



 DAY3 上午

 数字化转型1:工业&智能制造领域为例

 09:00-12:00



 互动环节:历史悠久的大数据机构都有哪些?


  大数据行业的应用比较


   金融 à 人

   工业 à 机器

   未来 à 相互融合


  工业大数据


   工业大数据的理解

   工业4.0



    现况和案例


     国外:德国、美国、日本...

     国内:


    工业1.0~4.0的历史

    工业4.0的生态系统


   工业4.0的5大特点


    互联

    数据

    集成

    创新


   工业大数据的发展历史

   工业大数据的标准体系

   工业大数据的特点

   工业大数据的目前所面临的问题

   工业大数据的应用


    典型案例

    汽车行业


   工业大数据的关键技术


    人工智能

    工业互联网

    工业云计算

    工业大数据

    工业机器人

    3D打印

    知识工作自动化

    工业网络安全

    物联网:IOT

    ICT:信息与通讯技术


   工业大数据的未来展望 (机遇和挑战)


  智能制造4大主题

   智能工厂

   智能生产

   智能物流

   智能服务



5)数字化转型2:新零售(汽车)为例



 DAY3 下午

 数字化转型2:新零售(汽车)为例

 13:30-17:30


 互动环节:全球最大的数据库是什么?


  大数据在汽车行业中的应用


 o    精准营销1:引流

 o    精准营销2:转化

 o    精准营销3:留存

 o    精准营销4:复购

 o    精准营销5:精准定位——个人

 o    精准营销6:智能化大数据扫楼

 o    客户体验

 o    供应链管理

 o    风控体系


  数据源


 o    数据来源

 o    外部数据的获取——购买、交换、加工

 o    外部数据源评价表

 o    数据源获取难度分析

 o    市面上部分数据源状态表(示例:补助数据)


  外部服务/技术评价表

  最新技术在汽车新零售领域的应用(生物识别、人脸识别、语言识别、wifi探针…等)

  线下大数据收集体系——部分传感器成本计算

  家庭大数据


 o    基于家庭的新模式(新维度——跨时间、跨领域)

 o    家庭大数据——助力数据的几何倍数增长

 o    家庭大数据效应

 o    家庭大数据的发展

 o    未来展望——家庭大数据

 o    新技术的应用:区块链、人工智能、心理学



6)演练:数据分析


 DAY4 上午

 演练:数据分析

 09:00-12:00



 第一部分:数据分析理论知识介绍

 互动环节:大数据公司除了数据量,还有哪些维度可进行差别化?


  数据分析发展历史


 o    数据分析——古老的行业

 o    典型数据分析机构——CIA、摩萨德…

 o    数据分析的关键——不是工具,而是逻辑思维

 ·         数据来源

 o    收集什么数据

 o    怎么收集数据?

 o    我们可用的数据都有什么?

 §  内部数据:公司内部都有什么数据?

 §  外部数据:

 §  第三方数据,如:征信报告

 §  行业报告——公司战略

 o    如果公司没有任何数据,该怎么办?

 o    怎么把这些内容反映到产品中?


  案例


 o    案例:希腊/罗马占卜师

 o    案例:航海

 o    案例:二战时期的大数据分析

 o    案例:二战V-1型导弹

 o    案例:沃伦巴菲特

 o    案例:啤酒&尿布

 o    案例:人力资源

 o    案例:浙江泰隆商业银行


  传统产业数字化转型对策思考


 o    对行业洞察力和解决方案等能力的必要性

 o    手段:科技赋能、数据赋能、金融赋能和生态赋能;



 DAY4 下午

 演练:数据分析

 13:30-17:30



 第二部分:实际操作

 互动环节:数据是否 “多多益善”?

 ·         怎么读图表?

 o    怎么在这些图表中找出有意义的内容(marketing insight)?

 o    案例分析:

 §  公众号分析案例

 §  H5的分析案例(最佳发送时间)

 §  网站的访问量(数据中国)

 §  各大公司(BAT等)市场报告的解释

 §  网上促销活动效果分析

 o    数据分析在大数据行业中的应用介绍

 §  国内某银行大数据

 §  其他:政府、公共领域中的营销案例

 ·         利用最简单的周边工具进行高端分析

 o    快捷键的应用

 o    各种函数的使用

 o    “百度知道”、“百度视频”、“关键字查询”

 ·        高端分析简介:通过EXCEL来做的高端分析案例介绍

 o    企业估值模型

 o    投资领域:大型估值项目的计算

 o    风控领域:评分卡领域


 第三部分:怎么利用数据分析指导业务发展?

 ·         怎么获取更多客户?

 ·         客户的需求是什么?

 ·         怎么满足客户的需求?

 ·         怎么更有效地推进线上线下活动

 o    怎么测试各种活动的效果

 o    怎么宣传

 o    应该在什么时间、什么地点推进各种活动?

 ·         怎么通过不完整的数据,得出比较可靠的结果?

 ·         目前都有什么可用的技术?


  怎么在图表中找出有意义的内容(marketing insight)?

  数据分析案例:如何制定促销方案的KPI


 o    如何制定促销活动效果的上、下限?

 o    如何判断本次活动中,企业的品牌创造出的价值?

全部评论 (0)
热门领域讲师
互联网营销 互联网 新媒体运营 短视频 电子商务 社群营销 抖音快手 新零售 网络推广 领导力 管理技能 中高层管理 中层管理 团队建设 团队管理 高绩效团队 创新管理 沟通技巧 执行力 阿米巴 MTP 销售技巧 品牌营销 销售 大客户营销 经销商管理 销讲 门店管理 商务谈判 经济形势 宏观经济 商业模式 私董会 转型升级 股权激励 纳税筹划 非财管理 培训师培训 TTT 公众演说 招聘面试 人力资源 非人管理 服装行业 绩效管理 商务礼仪 形象礼仪 职业素养 数据加载错误
Message:Exception of type 'System.Web.HttpUnhandledException' was thrown.
Source:System.Web
StackTrace: at System.Web.UI.Page.HandleError(Exception e) at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint) at System.Web.UI.Page.ProcessRequest() at System.Web.UI.Page.ProcessRequest(HttpContext context) at System.Web.Mvc.ViewPage.ProcessRequest(HttpContext context) at System.Web.Mvc.ViewUserControl.ViewUserControlContainerPage.ProcessRequest(HttpContext context) at System.Web.Mvc.ViewPage.RenderView(ViewContext viewContext) at System.Web.Mvc.ViewUserControl.RenderView(ViewContext viewContext) at System.Web.Mvc.WebFormView.RenderView(ViewContext viewContext, TextWriter writer, Object instance) at System.Web.Mvc.Html.RenderPartialExtensions.RenderPartial(HtmlHelper htmlHelper, String partialViewName, Object model, ViewDataDictionary viewData) at System.Web.Mvc.Html.SDRenderPartialExtensions.SDRenderPartial(HtmlHelper helper, String partialName, Object model, ViewDataDictionary viewData, Action`2 expFunc)
Message:Collection was modified; enumeration operation may not execute.
Source:mscorlib
StackTrace: at System.Collections.Generic.List`1.Enumerator.MoveNextRare() at ASP.views_space_spacerightbar_v2_ascx.__Render__control1(HtmlTextWriter __w, Control parameterContainer) in d:\webs\subsite-pc.jiangshi.org\Views\Space\SpaceRightBar_v2.ascx:line 52 at System.Web.UI.Control.RenderChildrenInternal(HtmlTextWriter writer, ICollection children) at System.Web.UI.Control.RenderChildrenInternal(HtmlTextWriter writer, ICollection children) at System.Web.Mvc.ViewPage.Render(HtmlTextWriter writer) at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint, Boolean includeStagesAfterAsyncPoint)
讲师网青岛站 qd.jiangshi.org 由加盟商 杭州讲师云科技有限公司 独家运营
培训业务联系:小文老师 18681582316

杭州讲师网络科技有限公司 更多城市分站招商中